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Abstract 
In the context of fuzzy control, antecedent 

parameters are used to provide a segmentation of the 
state space so that different regions can be modeled 
appropriately.  In Adaptive Critic methodologies, two 
modules (the critic and the controller) must properly 
segment the state space to insure good performance.  
In this paper, we explore the effects of tuning 
antecedent parameters that are shared between these 
controller and critic networks (as opposed to tuning 
separate parameter sets).  The results indicate that 
training shared antecedent parameters can be as 
effective as training separate antecedent parameters. 

 
1. Introduction 

Fuzzy logic allows an expert to create a controller 
that is well suited to a plant by using linguistic 
characterizations of the plant’s state.  This 
characterization defines which rules (or consequent 
parameters) should be used to control the plant.  In 
some cases, however, no expert may be available who 
can adequately characterize the appropriate regions of 
the input space.  In these cases, one might divide the 
input space into a great number of regions, or use an 
adaptive methodology to tune the region boundaries 
appropriately.  This paper follows the latter approach.   

In previous work within the Dual Heuristic 
Programming (DHP) paradigm [3][6], the same 
parameters are used as input to both controller and 
critic modules, each of which is allowed to 
independently alter its consequent parameters.  This 
research [6] has shown that highly nonlinear plants 
can be controlled efficiently using fuzzy 
implementations of the controller and critic within the 
DHP methodology.  Other research within the context 
of reinforcement learning indicates that tuning the 
antecedent parameters can yield better performance 
than using predefined antecedent parameters [1].  This 
paper addresses the issue of combining these 
approaches in a fruitful manner. 

In this paper, we explore the implications of 
training antecedent parameters that are shared between 
the controller and the critic by using the following 
techniques: training antecedent parameters with the 
critic only, training with the controller only, training 
using both the critic and the controller, and not 
training the antecedent parameters.  We also explore 
the possibility that antecedent parameters, even though 
they are partitioning the same state space, should be 
tuned separately by the controller and the critic. 

The rationale behind these inquiries is that, for 
both the critic and controller, success depends on 
partitioning the state space so that nonlinearities of the 
plant can be modeled by local linear models.  Given 
that the same state space must be characterized by 
both modules, it would seem that a common state 
space partitioning could be achieved more effectively 
with contributions from both the controller and the 
critic. 

Intuitively, a good state space segmentation for 
estimating the optimal ‘cost to go’ function should 
also be a good segmentation for estimating the 
associated optimal control law.  Certain forms of 
estimators might negate this relationship for some 
plants, but in general we would expect a significant 
correspondence.  

 
2. Background 
2.1 Adaptive Critic methodology 

The experiments presented in this paper train a 
fuzzy controller using the Dual Heuristic 
Programming (DHP) methodology, which falls under 
the more general category of Adaptive Critic 
Approximate Dynamic Programming (which is in turn 
subsumed by reinforcement learning).  These 
technologies use a critic whose role is to evaluate the 
performance of the controller.  This evaluation is then 
used to train the parameters of the controller.  We will 
only touch on several relevant details here; the 
interested reader is referred to [3] or [6] for a more 
complete discussion of the issues involved. 
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In classical Dynamic Programming, the secondary 
(temporally extensive) utility, J, relies on an 
exponentially weighted sum of future (instantaneous) 
utilities, U.  This equation (known as the Bellman 
equation) is shown below, where γ represents the 
discount factor with respect to future terms:  
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Approximate Dynamic Programming relies on the 
Bellman Recursion to train the critic to approximate 
the secondary utility function by evaluating the 
consistency between successive estimates.  There is a 
tremendous savings in this approach as opposed to 
Dynamic Programming, which is computationally 
infeasible for most significant problems.  This 
recursion is expressed as follows: 
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Finally, in the DHP approach, the critic network 

comes to approximate a function that expresses the 
derivative of this secondary utility with respect to the 
state vector. 

 
2.2 Fuzzy Models 

For the critic and controller modules, we use the 
multiple output ANFIS (Adaptive Network-based 
Fuzzy Inference System) architecture [2].  This 
architecture corresponds directly to a Takagi-Sugeno-
Kang (TSK) fuzzy model, which is represented as a 
feedforward network composed of small 
computational units.   

The antecedent membership function parameters 
(c,σ) define the center and width of Gaussian 
membership functions in order to partition the state 
space, as follows: 
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The product of these membership values was used 

to perform the fuzzy AND operation, which was 
normalized to determine the final firing strength of 
each rule: 
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The consequent parameters of the critic and controller 
define first-order (linear) models.  The output of the 

ANFIS structure is the sum of the product of each rule 
and its associated firing strength: 
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One requirement for the use of fuzzy critics 

within the DHP methodology is the ability to compute 
the Jacobian of the controller, which is needed in order 
to train the critic network.  The ANFIS architecture 
lends itself easily to this computation; there are only 
several additional computations involved in this 
procedure compared to those required to compute the 
gradient for antecedent parameter tuning. 

 
2.3 The Plant 

The plant used in this experiment was first 
proposed by Narendra and Mukhopadhyay [5].  It is a 
nonlinear, discrete-time MIMO plant that requires the 
controller to track a two-variable reference signal.  
Previous work [4][7] using the DHP methodology has 
demonstrated excellent control of this plant using 
neural network implementations (Multi-Layer 
Perceptrons) of the controller and the critic. 

The plant has three state variables (x) and a 
control vector of dimension two (u).  The plant state 
equations are expressed as follows: 

 

)(
)(1

)(2
)(

)(
)()(1

)()(
5.12

))(sin()(9.0)1(

22
1

1
1

12
1

2
1

11

211

tu
tx

tx
tx

tu
tutx

tutx

txtxtx













+
+

+












+
+

+=+

 

[ ]
)(1

)())(4sin(1)1( 2
3

3
332 tx

txtxxtx
+

++=+  

[ ] )())(2sin(3)1( 213 tutxtx +=+  
 
The reference signals used to test performance 

were complex sinusoids: 
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The goal of controlling this plant is to make the 

first two state variables track the reference trajectory.  
This leads to a simple utility (error) function: 
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In this experiment, the state provided to the 

controller and the critic consisted of all the plant state 
variables and the reference trajectory at the next time 
step.   

Finally, the Jacobian of the plant is necessary in 
order to train the critic (as DHP is a model-dependant 
methodology).  Although these derivatives can be 
estimated without the use of the plant equations, this 
approach was not taken here.  The non-zero terms of 
the Jacobian are as follows: 
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3. Methods 

Two primary sets of experiments were conducted: 
one in which the controller and critic share antecedent 
parameters, and one in which they had independent 
sets of parameters.  In both instances, there were four 
possible scenarios: no antecedent training, antecedent 
training using the critic, antecedent training using the 
controller, and training using both the controller and 
the critic.  Thus there were eight cases, for each of 
which eighteen separate trials were conducted.   

In order to train the ANFIS networks, a reference 
signal was chosen which remained at a given value for 
40 time steps, then changed to another random value 
within the range [-1.5, 1.5].  This training was carried 
out for 240,000 trials.  Every 4,000 trials during this 
period, training was halted to measure performance on 

the reference signal task. No learning occurred during 
this interval. 

For all our experiments, both the controller and 
critic structures were trained simultaneously (i.e. on 
every trial), as this has been shown to have a relatively 
rapid convergence [4].  The discount factor used in the 
Bellman recursion was set at 1.0. 

Three membership functions were used for each 
state variable.  For the first set of experiments, these 
were arranged so that their centers had a uniform 
distribution [-1,0,1].  Their widths were computed 
such that the adjacent membership functions 
overlapped at the 0.5 level (Figure 1). 

 
Figure 1: Membership functions for basic comparison 

For a second set of experiments, initial 
membership functions were deliberately chosen to be 
inadequate.  The centers were set at [-2,0,2] and the 
overlap was set at 0.004 (Figure 2), so that it was of 
greater importance to tune the antecedent parameters.  
The same eight cases were used, for each of which 
nine separate trials were conducted.   

 
Figure 2: Poorly chosen membership functions 

In order to train the critic and controller 
consequent parameters, learning rates of 0.005 and 
0.002 were used (respectively).  The learning rates of 
the Gaussian antecedent parameters (both the center 
and the width) for the primary results reported in this 
paper were 0.0002 for the controller and 0.000005 for 
the critic.  The justification of these values is taken up 
subsequently. 

The results refer to the eight cases by number, as 
follows: 

Shared Antecedent Parameters 
 Critic not used 

in training 
Critic used in 
training 

Controller not 
used in training 1 2 

Controller used 3 4 
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in training 
Separate Antecedent Parameters  

 Critic not used 
in training 

Critic used in 
training 

Controller not 
used in training 5 6 

Controller used 
in training 7 8 

Note that cases 1 and 5 are identical, in that no 
antecedent learning is performed (thus separate trials 
were not conducted for these two cases). 
 
4. Results 
4.1 Comparison of Cases 

Training shared antecedent parameters offered a 
slight advantage over training separate parameters.  In 
Figure 3, the averaged results of the eighteen trials for 
each condition are displayed for the cases in which 
both the critic and the controller trained their 
antecedent parameters (cases 4, 8).  Training that used 
the controller and the critic tended to result in the best 
performance in both the shared and separate 
antecedent parameter conditions. 

 
Figure 3: MSE for shared vs. separate parameter cases (4, 8) 

The results of sharing antecedent parameters 
between the controller and critic had differential 
effects depending on which of these two modules was 
used to train these parameters.  The fastest 
convergence occurred when either the controller or 
both the critic and the controller were used to train the 
antecedents (cases 3,4, Figure 4).  Training the 
antecedents using a learning rate for the critic which 
was comparable to that of the controller often resulted 
in instability.  At a lower critic learning rate 
(0.000005), results tended to be only slightly better 
than those that did not use the critic for antecedent 
training. 

 

 
Figure 4: MSE for shared antecedent parameter cases (1,2,3,4) 

The results for tuning separate antecedent 
parameters (Figure 5) were very similar to those 
obtained by using shared antecedent parameters.  
Performance, however, was slightly worse. 
 

 
Figure 5: MSE for separate antecedent parameter cases (5,6,7,8) 

After 240,000 trials, a comparison of all eight 
cases (Figure 6) shows that shared parameter cases 
that used the controller to train the antecedents (cases 
3,4) had the best performance.  The condition in which 
separate antecedent parameters were used all 
performed roughly equivalently, although the case that 
trained only the controller’s parameters (case 7) was 
slower to reach this value (as can be seen in Figure 5).  

In general, the effects mentioned were more 
pronounced during the initial stages of learning, and 
decreased with the number of trials.  The final 
difference in MSE was not very large. 
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Figure 6: Boxplot of MSE for all groups after 240,000 
presentations 

 
4.2 Poorly Chosen Antecedents 

The set of membership functions in this 
experiment produced a very unstable controller.  Nine 
trials were performed for each case.  None of the cases 
which trained their antecedent parameters were stable 
for all nine trials.  The chart below indicates the 
number of trials (out of nine) for each case that were 
able to run to completion in a stable manner. 

 
Number of stable trials 

Case # 1 2 3 4 5 6 7 8 
Number of 
stable trials  9 8 0 8 9 8 0 1 

 
Training antecedents using only the controller 

caused instability (cases 3,7).  Only two cases 
converged to values similar to those obtained in the 
previous experiment, both of which used the controller 
and critic to train the antecedents.  Of these two, the 
shared parameter case (4) was stable in a greater 
number of trials (8 as opposed to 1).  The results for 
this experiment are shown in Figure 7.   

 
Figure 7: Results for poorly chosen antecedents 

 

5. Conclusion 
Shared parameter cases were found to perform as 

well as, or better than, the corresponding separate 
parameter cases.  This suggests that independent sets 
of antecedent parameters are unnecessary, even when 
these parameters are tuned by different controller and 
critic modules.   

Similarly, using both the critic and the controller 
to train the antecedents was beneficial.  This was 
especially true of the trials using poorly chosen 
antecedents.  In these trials, the only case that 
consistently learned the control task satisfactorily used 
both controller and critic training of a shared set of 
parameters. 

One of the primary difficulties encountered in this 
study derives from the interplay between the various 
learning rates that are involved.  In Adaptive Critic 
methodologies, the learning rates for the controller and 
the critic need to be balanced with respect to one 
another, because each of these modules depends on 
the performance of the other module in order to 
accomplish its own task.  This coordination of 
learning rates (which is generally done by a process of 
trial and error) is aggravated by the balance that needs 
to be struck between the learning rates of the 
antecedent and consequent parameters. 

Given that training shared antecedent parameters 
is beneficial, we suggest that Adaptive Critic 
methodologies that need to train their antecedents 
should use shared parameters.  It not only reduces the 
number of adjustable parameters of the model, but is 
also of benefit to the performance of the controller. 
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