
A Comparison of DHP Based Antecedent Parameter Tuning Strategies
for Fuzzy Control

Alec M. Rogers, Thaddeus T. Shannon and George G. Lendaris

Northwest Computational Intelligence Laboratory
Portland, Oregon USA

alec@arborrhythms.com, tads@sysc.pdx.edu, lendaris@sysc.pdx.edu

Abstract
In the context of fuzzy control, antecedent

parameters are used to provide a segmentation of the
state space so that different regions can be modeled
appropriately. In Adaptive Critic methodologies, two
modules (the critic and the controller) must properly
segment the state space to insure good performance.
In this paper, we explore the effects of tuning
antecedent parameters that are shared between these
controller and critic networks (as opposed to tuning
separate parameter sets). The results indicate that
training shared antecedent parameters can be as
effective as training separate antecedent parameters.

1. Introduction

Fuzzy logic allows an expert to create a controller
that is well suited to a plant by using linguistic
characterizations of the plant’s state. This
characterization defines which rules (or consequent
parameters) should be used to control the plant. In
some cases, however, no expert may be available who
can adequately characterize the appropriate regions of
the input space. In these cases, one might divide the
input space into a great number of regions, or use an
adaptive methodology to tune the region boundaries
appropriately. This paper follows the latter approach.

In previous work within the Dual Heuristic
Programming (DHP) paradigm [3][6], the same
parameters are used as input to both controller and
critic modules, each of which is allowed to
independently alter its consequent parameters. This
research [6] has shown that highly nonlinear plants
can be controlled efficiently using fuzzy
implementations of the controller and critic within the
DHP methodology. Other research within the context
of reinforcement learning indicates that tuning the
antecedent parameters can yield better performance
than using predefined antecedent parameters [1]. This
paper addresses the issue of combining these
approaches in a fruitful manner.

In this paper, we explore the implications of
training antecedent parameters that are shared between
the controller and the critic by using the following
techniques: training antecedent parameters with the
critic only, training with the controller only, training
using both the critic and the controller, and not
training the antecedent parameters. We also explore
the possibility that antecedent parameters, even though
they are partitioning the same state space, should be
tuned separately by the controller and the critic.

The rationale behind these inquiries is that, for
both the critic and controller, success depends on
partitioning the state space so that nonlinearities of the
plant can be modeled by local linear models. Given
that the same state space must be characterized by
both modules, it would seem that a common state
space partitioning could be achieved more effectively
with contributions from both the controller and the
critic.

Intuitively, a good state space segmentation for
estimating the optimal ‘cost to go’ function should
also be a good segmentation for estimating the
associated optimal control law. Certain forms of
estimators might negate this relationship for some
plants, but in general we would expect a significant
correspondence.

2. Background
2.1 Adaptive Critic methodology

The experiments presented in this paper train a
fuzzy controller using the Dual Heuristic
Programming (DHP) methodology, which falls under
the more general category of Adaptive Critic
Approximate Dynamic Programming (which is in turn
subsumed by reinforcement learning). These
technologies use a critic whose role is to evaluate the
performance of the controller. This evaluation is then
used to train the parameters of the controller. We will
only touch on several relevant details here; the
interested reader is referred to [3] or [6] for a more
complete discussion of the issues involved.

IFSA/NAFIPS’01, July, 2001, Vancouver, BC Page

1/6

mailto:alec@arborrhythms.com
mailto:tads@sysc.pdx.edu
mailto:lendaris@sysc.pdx.edu

IFSA/NAFIPS’01, July, 2001, Vancouver, BC Page 2/6

In classical Dynamic Programming, the secondary
(temporally extensive) utility, J, relies on an
exponentially weighted sum of future (instantaneous)
utilities, U. This equation (known as the Bellman
equation) is shown below, where γ represents the
discount factor with respect to future terms:

∑
∞

=

+=
0

)()(
k

k ktUtJ γ

Approximate Dynamic Programming relies on the
Bellman Recursion to train the critic to approximate
the secondary utility function by evaluating the
consistency between successive estimates. There is a
tremendous savings in this approach as opposed to
Dynamic Programming, which is computationally
infeasible for most significant problems. This
recursion is expressed as follows:

)1()()(++= tJtUtJ γ

Finally, in the DHP approach, the critic network

comes to approximate a function that expresses the
derivative of this secondary utility with respect to the
state vector.

2.2 Fuzzy Models

For the critic and controller modules, we use the
multiple output ANFIS (Adaptive Network-based
Fuzzy Inference System) architecture [2]. This
architecture corresponds directly to a Takagi-Sugeno-
Kang (TSK) fuzzy model, which is represented as a
feedforward network composed of small
computational units.

The antecedent membership function parameters
(c,σ) define the center and width of Gaussian
membership functions in order to partition the state
space, as follows:

2

5.0
)(








 −
−

= i

i

i

cx

A ex σµ

The product of these membership values was used

to perform the fuzzy AND operation, which was
normalized to determine the final firing strength of
each rule:

)()(yxw
ii BAi µµ=

∑
=

j
j

i
i w

ww

The consequent parameters of the critic and controller
define first-order (linear) models. The output of the

ANFIS structure is the sum of the product of each rule
and its associated firing strength:

∑ ++=
j

jjjjjj bymxmwy)(,2,1

One requirement for the use of fuzzy critics

within the DHP methodology is the ability to compute
the Jacobian of the controller, which is needed in order
to train the critic network. The ANFIS architecture
lends itself easily to this computation; there are only
several additional computations involved in this
procedure compared to those required to compute the
gradient for antecedent parameter tuning.

2.3 The Plant

The plant used in this experiment was first
proposed by Narendra and Mukhopadhyay [5]. It is a
nonlinear, discrete-time MIMO plant that requires the
controller to track a two-variable reference signal.
Previous work [4][7] using the DHP methodology has
demonstrated excellent control of this plant using
neural network implementations (Multi-Layer
Perceptrons) of the controller and the critic.

The plant has three state variables (x) and a
control vector of dimension two (u). The plant state
equations are expressed as follows:

)(
)(1

)(2
)(

)(
)()(1

)()(
5.12

))(sin()(9.0)1(

22
1

1
1

12
1

2
1

11

211

tu
tx

tx
tx

tu
tutx

tutx

txtxtx













+
+

+












+
+

+=+

[]
)(1

)())(4sin(1)1(2
3

3
332 tx

txtxxtx
+

++=+

[])())(2sin(3)1(213 tutxtx +=+

The reference signals used to test performance

were complex sinusoids:







+






=

10
2sin75.0

50
2sin75.0)(~

1
tttx ππ







+






=

20
2sin75.0

30
2sin75.0)(~

2
tttx ππ

The goal of controlling this plant is to make the

first two state variables track the reference trajectory.
This leads to a simple utility (error) function:

IFSA/NAFIPS’01, July, 2001, Vancouver, BC Page 3/6

2

22
2

11)~()~()(xxxxtU −+−=

In this experiment, the state provided to the

controller and the critic consisted of all the plant state
variables and the reference trajectory at the next time
step.

Finally, the Jacobian of the plant is necessary in
order to train the critic (as DHP is a model-dependant
methodology). Although these derivatives can be
estimated without the use of the plant equations, this
approach was not taken here. The non-zero terms of
the Jacobian are as follows:

()
()

()
)(

)()(1

)()(1
5.1

)(
)(1

)(12
1

)(sin9.0)1(
)(

2
122

1
2
1

2
1

2
1

222
1

2
1

21
1

tu
tutx

tutx

tu
tx

tx

txtx
tx















+

−

+














−

−
+

+=+
∂
∂

))(cos()(9.0)1(
)(211

2
txtxtx

tx
=+

∂
∂

()22
3

2
3

33

32
3

)(1

)(1
))(4cos()(4

))(4sin(1)1(
)(

tx

tx
txtx

txtx
tx

+

−
+

++=+
∂
∂

))(2cos()(2)1(
)(113

1
txtutx

tx
=+

∂
∂

3. Methods

Two primary sets of experiments were conducted:
one in which the controller and critic share antecedent
parameters, and one in which they had independent
sets of parameters. In both instances, there were four
possible scenarios: no antecedent training, antecedent
training using the critic, antecedent training using the
controller, and training using both the controller and
the critic. Thus there were eight cases, for each of
which eighteen separate trials were conducted.

In order to train the ANFIS networks, a reference
signal was chosen which remained at a given value for
40 time steps, then changed to another random value
within the range [-1.5, 1.5]. This training was carried
out for 240,000 trials. Every 4,000 trials during this
period, training was halted to measure performance on

the reference signal task. No learning occurred during
this interval.

For all our experiments, both the controller and
critic structures were trained simultaneously (i.e. on
every trial), as this has been shown to have a relatively
rapid convergence [4]. The discount factor used in the
Bellman recursion was set at 1.0.

Three membership functions were used for each
state variable. For the first set of experiments, these
were arranged so that their centers had a uniform
distribution [-1,0,1]. Their widths were computed
such that the adjacent membership functions
overlapped at the 0.5 level (Figure 1).

Figure 1: Membership functions for basic comparison

For a second set of experiments, initial
membership functions were deliberately chosen to be
inadequate. The centers were set at [-2,0,2] and the
overlap was set at 0.004 (Figure 2), so that it was of
greater importance to tune the antecedent parameters.
The same eight cases were used, for each of which
nine separate trials were conducted.

Figure 2: Poorly chosen membership functions

In order to train the critic and controller
consequent parameters, learning rates of 0.005 and
0.002 were used (respectively). The learning rates of
the Gaussian antecedent parameters (both the center
and the width) for the primary results reported in this
paper were 0.0002 for the controller and 0.000005 for
the critic. The justification of these values is taken up
subsequently.

The results refer to the eight cases by number, as
follows:

Shared Antecedent Parameters
 Critic not used

in training
Critic used in
training

Controller not
used in training 1 2

Controller used 3 4

IFSA/NAFIPS’01, July, 2001, Vancouver, BC Page 4/6

in training
Separate Antecedent Parameters

 Critic not used
in training

Critic used in
training

Controller not
used in training 5 6

Controller used
in training 7 8

Note that cases 1 and 5 are identical, in that no
antecedent learning is performed (thus separate trials
were not conducted for these two cases).

4. Results
4.1 Comparison of Cases

Training shared antecedent parameters offered a
slight advantage over training separate parameters. In
Figure 3, the averaged results of the eighteen trials for
each condition are displayed for the cases in which
both the critic and the controller trained their
antecedent parameters (cases 4, 8). Training that used
the controller and the critic tended to result in the best
performance in both the shared and separate
antecedent parameter conditions.

Figure 3: MSE for shared vs. separate parameter cases (4, 8)

The results of sharing antecedent parameters
between the controller and critic had differential
effects depending on which of these two modules was
used to train these parameters. The fastest
convergence occurred when either the controller or
both the critic and the controller were used to train the
antecedents (cases 3,4, Figure 4). Training the
antecedents using a learning rate for the critic which
was comparable to that of the controller often resulted
in instability. At a lower critic learning rate
(0.000005), results tended to be only slightly better
than those that did not use the critic for antecedent
training.

Figure 4: MSE for shared antecedent parameter cases (1,2,3,4)

The results for tuning separate antecedent
parameters (Figure 5) were very similar to those
obtained by using shared antecedent parameters.
Performance, however, was slightly worse.

Figure 5: MSE for separate antecedent parameter cases (5,6,7,8)

After 240,000 trials, a comparison of all eight
cases (Figure 6) shows that shared parameter cases
that used the controller to train the antecedents (cases
3,4) had the best performance. The condition in which
separate antecedent parameters were used all
performed roughly equivalently, although the case that
trained only the controller’s parameters (case 7) was
slower to reach this value (as can be seen in Figure 5).

In general, the effects mentioned were more
pronounced during the initial stages of learning, and
decreased with the number of trials. The final
difference in MSE was not very large.

IFSA/NAFIPS’01, July, 2001, Vancouver, BC Page 5/6

Figure 6: Boxplot of MSE for all groups after 240,000
presentations

4.2 Poorly Chosen Antecedents

The set of membership functions in this
experiment produced a very unstable controller. Nine
trials were performed for each case. None of the cases
which trained their antecedent parameters were stable
for all nine trials. The chart below indicates the
number of trials (out of nine) for each case that were
able to run to completion in a stable manner.

Number of stable trials

Case # 1 2 3 4 5 6 7 8
Number of
stable trials 9 8 0 8 9 8 0 1

Training antecedents using only the controller

caused instability (cases 3,7). Only two cases
converged to values similar to those obtained in the
previous experiment, both of which used the controller
and critic to train the antecedents. Of these two, the
shared parameter case (4) was stable in a greater
number of trials (8 as opposed to 1). The results for
this experiment are shown in Figure 7.

Figure 7: Results for poorly chosen antecedents

5. Conclusion
Shared parameter cases were found to perform as

well as, or better than, the corresponding separate
parameter cases. This suggests that independent sets
of antecedent parameters are unnecessary, even when
these parameters are tuned by different controller and
critic modules.

Similarly, using both the critic and the controller
to train the antecedents was beneficial. This was
especially true of the trials using poorly chosen
antecedents. In these trials, the only case that
consistently learned the control task satisfactorily used
both controller and critic training of a shared set of
parameters.

One of the primary difficulties encountered in this
study derives from the interplay between the various
learning rates that are involved. In Adaptive Critic
methodologies, the learning rates for the controller and
the critic need to be balanced with respect to one
another, because each of these modules depends on
the performance of the other module in order to
accomplish its own task. This coordination of
learning rates (which is generally done by a process of
trial and error) is aggravated by the balance that needs
to be struck between the learning rates of the
antecedent and consequent parameters.

Given that training shared antecedent parameters
is beneficial, we suggest that Adaptive Critic
methodologies that need to train their antecedents
should use shared parameters. It not only reduces the
number of adjustable parameters of the model, but is
also of benefit to the performance of the controller.

References
[1] Hougen, Dean F., Gini, Maria & Slagle, James,

“Partitioning Input Space for Reinforcement
Learning for Control”, Proceedings of the
International Conference on Neural Networks,
1997, Vol 2 pp 755-760.

[2] Jang, J.-S.R., Sun,C.-T., & Mizutani, E., Neuro-
Fuzzy and Soft Computing, Prentice Hall,
Upper Saddle River, NJ, 1997.

[3] Lendaris, G., Shannon, Thaddeus T., et al.,
“Dual Heuristic Programming for Fuzzy
Control”, Proceedings of 20th NAFIPS
International Conference, Vancouver, BC,
Canada, July, 2001.

[4] Lendaris, G., Shannon, Thaddeus T., Rustan,
A., “A Comparison of Training Algorithms for
DHP Adaptive Critic Neuro-control”,
Proceedings of IJCNN 1999, Washington DC,
July 1999.

IFSA/NAFIPS’01, July, 2001, Vancouver, BC Page 6/6

[5] Narendra, Kumpati S. & Mukhopadhyay,
Snehasis, “Adaptive control of Nonlinear
Multivariable Systems Using Neural
Networks”, Neural Networks, Vol 7, issue 5, pp
737-752.

[6] Shannon, Thaddeus T. & Lendaris, George G.,
“Adaptive Critic Based Dynamic Programming
for Tuning Fuzzy Controllers”, Proceedings of
IEEE – Fuzz 2000, San Antonio, TX, May
2000.

[7] Visnevski, N., & Prokhorov, D. “Control of a
Nonlinear Multivariable System with Adaptive
Critic Designs”, in C. Dagli, et al (eds)
Intelligent Engineering Systems Through
Neural Networks, (Proceedings conference of
Artificial Neural Networks in Engineering) Vol
6 pp 559-565, New York ASME press, 1996.

[8] Werbos, Paul J., “Designs for Reinforcement
Learning”, in Miller, T.W., Sutton, R.S., &
Werbos, P.J. eds. Neural Networks for Control,
the MIT Press, Cambridge, MA, 1990, pp 67-
95.

[9] Yen, John & Langari, Reza, Fuzzy Logic:
Intelligence, Control, and Information, Prentice
Hall, Upper Saddle River, NJ, 1999.

	A Comparison of DHP Based Antecedent Parameter Tuning Strategies
	for Fuzzy Control

