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Abstract— This paper is an analysis of the Instantaneous
Estimate of Autocorrelation (IEAC), which is defined as a signal
formed by taking the product of the current value of a signal and
the vector composed of its delayed values. The mean of this signal
is the unbiased estimate of the autocorrelation of the original
signal. Here, we explore several useful statistics associated with
this signal, and suggest applications where they may be put to
good use. Experiments are performed which demonstrate the
beneficial properties of preserving more of this signal then is
contained in a simple point estimate of its mean (i.e. the estimated
autocorrelation).

Index Terms— Autocorrelation, nonstationary, time-varying fil-
ters, PCA.

I. INTRODUCTION

THIS paper is an analysis of a signal which we refer to
as the Instantaneous Estimate of Autocorrelation (IEAC)

signal. This is a vector valued, second order signal which is
defined in terms of a scalar valued, first order signal (which
we will consider to be a time series). It is a signal whose
vector coefficients at time � correspond to a product of the
signal with itself at lag

�
, and whose mean over a length N

represents an estimate of the autocorrelation of the original
signal.

Approaches to characterizing data that make use of a single
estimate of the autocorrelation of the signal are often (at least
implicitly) assuming that the signal is stationary (at least in
the wide sense); otherwise their use of this statistic would be
meaningless. In many cases, this assumption does not hold
exactly; in those cases, local stationarity (a much less strict
condition) is often assumed in order to make use of second
order statistics. It is then possible to model the signal as a
series of time-limited signals, each of which is stationary over
its duration. This approach is taken in many audio encoding
schemes, where sound may be assumed to have constant
spectral characteristics over a short interval.

We consider the reduction of the autocorrelation signal to a
point estimate to be, in general, harmful. Even short-duration
frames which assume stationarity within their restricted tem-
poral interval are not, perhaps, motivated by the data itself, but
rather by the benefits which are conferred by ‘blocking’ the
signal. In this paper, we explore the IEAC signal in order to see
how we might characterize this signal with several parameters.

Our work in this paper is intended, to some extent, to lay
a foundation for time-varying filters which are based on the
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time-varying autocorrelation. By characterizing the changes of
the IEAC signal over time, we can develop filters which are
better suited to signals which also change over time. Here, we
examine some of the problems associated with filters based on
the stationary autocorrleation, and suggest ways to go beyond
these types of filters.

II. THE INSTANTANEOUS ESTIMATE OF

AUTOCORRELATION DEFINED

Given a signal ��� ��� of length � , we define the IEAC
( �
	�� ��� ) as follows:

� 	 � ���
� � ��� ����� ��� ��� ��� ������������� ��� ��� ��� ��������� (1)

Where � denotes the number of lagged values of the vector.
We assume that ��� ���! #" for ��$%" , thus we form a vector
representing the signal as ��& which is of dimension �#'(� �*)��� .
A. The First Moment

The first moment of this series may be estimated as follows:
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The use of this estimator to determine the mean of the
IEAC signal has a nice property: it is identical to the vector
composed of the biased estimates of autocorrelation ( 9:<; � � � ,
[1]) of the original signal at lags "(= � =>� ( 9:?; � � � ):
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Accordingly, we may form the estimate of normalized
autocorrelation by normalizing + , - by its first element:

9K ; � �+L;?M?� "<� + ; M (5)

The normalized mean of the IEAC gives us a commonly
used estimate of the Autocorrelation Function (ACF), and thus
may be viewed as a different method of computation which
arrives at familiar results. What is significant in the change
of notation is that the autocorrelation is now viewed as a
vector-valued signal that is a function of time (which we may
easily transform into a time-varying, all-pole filter). Thus, an
advantage of ��& is that we may study it as a random vector
itself. However, we don’t want to reduce the signal to its mean;
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this amounts to the assumption that the IEAC is stationary of
the first order, which in turn implies that the original signal is
stationary of the second order. We are interested in how we
can characterize the signal before we (potentially) decide to
make this assumption.

There is a problem, however, in using the instantaneous
estimates of autocorrelation directly; they vary to a large
degree due to the presence of noise in the signal. In order to
eliminate some of this variance, we will window the elements
of the IEAC at all lags with a (normalized) Hanning window.
Thus, we are assuming that the autocorrelation of the signal
will change slowly. It is important to note in this respect
that windowing the IEAC is not equivalent to windowing
the orignal signal and then computing the autocorrelation
estimates. Since the only window used for the computation
of the IEAC is the window of observation, we are computing
our estimate of autocorrelation using a rectangular window
and then averaging this signal across time at each lag (with the
normalized Hanning window). Hence, our estimate will only
be biased at the beginning of the IEAC (i.e. at times �H$>� ,
where � denotes the number of lags in the IEAC signal).
This is where we are forced to use zeros for unknown values
of � ( ��� ��� for �H$ " ). After these � � � initial samples, the
normalized windowing of the IEAC does not bias the signal.

B. The Second (Central) Moment

Variance, as the IEAC is not a scalar signal, can be estimated
by projection onto an arbitrary vector of the subspace. In
order to find the vector corresponding to the maximal variance,
we use Principal Component Analysis (PCA). Note that this
approach is different from the one suggested by formulating
the ACF as a function of lag; in that case, we are more
prone to look at the variance of each correlation coefficient
independently.

By projecting the IEAC onto the first principal component of
its variance, we obtain a scalar-valued function that indicates
how the autocorrelation vector evolves over time. Inherent
in the vector formulation of variance is the assumption that
the autocorrelation values at different lags will not change
independently of each other. This does not mean that the
autocorrelations at different lags cannot change in different
directions; we only require that they change at the same rate.
If they did change at different rates, extraction of the principal
component of their (joint) variance would probably not be a
good characterization of their change with respect to time.

In order to do PCA, we formulate the autocorrelation matrix
of �
	 and decompose it using eigendecomposition:� ,.-/� �

� � 	�� � 	 (6) ����� �  #� � 6 � 2 �G�I�	��
 ��� � � 6 � 2 �I�I�
��
 � � (7)

The matrix
� ,.- has entries which are estimates of the fourth

order moments of the original signal, which may be expressed
as: ��� ��� ��� ��� � )�� � ��� � ) � � ��� � )������ (8)

In our case, �  >" and
��� ���#� " � � � .

C. Spectral Interpretations

If we have an ACF that changes with time, then we also
have a Power Spectral Density (PSD) that changes with time,
since the PSD of a signal is defined as the fourier transform of
its autocorrelation. This analysis requires us to use the Short
Time Fourier Transform to define the time-varying PSD.

If we assume that the model is stationary, then eigenvalue
spread is indicative of the spectral dynamic range of the signal
([1]), according to:�������� �! #" � � =%$ 4 =&��'�(�)� �* #" � � (9)

If, on the other hand, we do not make the assumption of
stationarity, then the spectral dynamic range may in fact be
attributable to the non-stationarity of the signal. For example,
a temporal decomposition of the signal may yield sequences
which taken separately do not have a wide spectral dynamic
range. This would imply that each sub-sequence has less
variation in its eigenvalues, which is beneficial for signal
compression.

In order to reduce the variance of the PSD estimate, we
window the IEAC across lags: this is equivalent to using the
Blackman-Tukey method of variance reduction for spectral
estimation. If we determine that the PSD is stationary, we
can time average the PSDs generated by the IEAC (according
to the Walsh-Bartlett method). Note that using both of these
methods probably introduces too much bias into our estima-
tion.

III. METHODOLOGY

For the first experiment, we analyze two signals which are
generated from two sources, each of which is filtered pseudo-
random noise. The sources ( + 2 � + � ) and signals ( � 2 � � � ) are
defined as follows:+ 2 � ���
� � � "�, � ����) " � -., � � ������� " � -/, � � �10 �+ � � ���
� � � "�, � ����) " � -., � � �����L) " � -/, � � �10 �� 2 � ���
� + 2 � ���

� � � ���
� 2 + 2 � ��� " =��H$ 0 �+ � � ��� 0 � =��H$ �
where , � ��� denotes white Gaussian noise with zero mean and
unit variance, and the length of the signal is �  3-�".4/5 . From
the analysis of the two signals � 2 and � � , we see that they
have the following ACF:K ;76  ��� " � - � " � -.�K ;98/ ��� " � - "<�
We note that the second coefficient of the second signal is an
average of � " � - � � " � - � , since we are taking the time average
over all � .

Our analysis of these signals proceeds by first forming the
IEAC signal at lags � " �	: 0?� . Next, we form the autocorrelation
matrix of the IEAC signal, from which we can determine the
principal axes of signal variation. In order to plot the data
(in two dimensions), we use the IEAC at lags � and 0 as
our axes, and plot the eigenvectors corresponding to these
two dimensions as scaled in magnitude by their respective
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eigenvalues. We then compare this to the residual of the
signal after we remove the prediction based on our estimate
of the (stationary) autocorrelation (we use an optimal all-pole
predictor of order two). Finally, we show the residual signal as
projected on the first principal component of the signal, which
corresponds to the temporal evolution of the IEAC on the axis
of its greatest variance.

IV. RESULTS

The sample data for � � � ��� is shown in Figure 1. The first
signal is not plotted, but obviously looks similar to the first half
of the � � � ��� . The IEAC signal is plotted as a function of time
for lags � � �	: 0?� in Figure 2 (we have omitted the case of lag "
since it dominates the plot of signal autocorrelation). We note
that the plot of the autocorrelation at lag 0 changes abruptly
in the middle of the signal, corresponding to the change of
autocorrelation present in the definition of the signal.
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Fig. 1. ��� ����� , the original signal

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time

la
g

500 1000 1500 2000 2500 3000 3500 4000

5

10

15

20

25

30

Fig. 2. �
	�� : Lags 1-32 of the IEAC signal.

Estimates of the (normalized) autocorrelation and the eigen-
matrices of the two signals are shown in Table I. We observe
that our estimates of autocorrelation are biased toward zero
compared to the actual values. The eigenvalue spread is " ����
.0��
for the first signal, and " ����5 : 
 for the second.

The plot of every eighth point of the IEAC of � � � ��� is
shown in Figure 3. Also shown on the plot are axes which

correpond to our estimate of the autocorrelation of the signal
(which is the mean of the points). The eigenvectors ( ��� ) are
depicted with heavy black lines, after having been multiplied
by their respective eigenvalues ( $ 4 ).

TABLE I

SIGNAL STATISTICS (ORIGINAL SIGNAL)����� ����� ����� ������� [1.0 0.1505 -0.3203] [1.0 0.2605 -0.0184]� ���� !#"%$'& �� ()()*)!+ �� ()()*)!,�� !#"%$'&.- �/�� "%$#()( �� 0#"��)(+ �� 0#"��)(,�� "%$#()(1-2 � �� !)!)�#" �� &) �&�"�3�$ - � �� "�*)4)! �� &) ()!)*#" -
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Fig. 3. � �5� : points projected on the 6�798 &):;(%< subspace.

In table II, we see the autocorrelation and eigenmatrices
corresponding to the residual signals, which are formed by
removing the component that could be predicted by an all-
pole predictor. As expected, the (stationary) autocorrelation is
very close to zero. The eigenvalue spread, however, has been
reduced to " � "/4.5�- in the first case, and " ���#-�

� in the second.
The direction of maximal variance for the second signal is in
the direction of the autocorrelation at lag 2, which is what we
would expect from the non-stationary definition of the signal.
The plot of the IEAC points for the second sequence is shown
in Figure 4.

TABLE II

SIGNAL STATISTICS (AFTER REMOVING PREDICTION)����� �=�
�?>)@%A ���B� �=�
� res�� [1.0 0.0461 -0.0664] [1.0 0.0099 -0.0049]� � + �� 4#"�()* �� $#4)4#"+ �� $#4)4#" + �� 4#"�()*C- � + �� !)!)0#" + �� �)4�&)&�� �)4�&)& �� !)!)0#"D-2 � &) �)()3)� �� �� !)()0)0 - � �� !)!)!)� �� &) �&E$F")" -
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Fig. 4. ���5� residual: points projected on the 6�798 &):;(%< subspace after filtering
with an all-pole filter

The projection of the residual of � 	�� onto its first prin-
cipal component is shown in Figure 5. Since this principal
component points almost exactly in the direction of the auto-
correlation at lag 0 (we are off by less than 5 degrees), we
have also plotted the actual autocorrelation at lag 0 .
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Fig. 5.
����� 8 M � & � : Variation of the IEAC projected on the first Principal

Component of the (
> � � & � : > � � ( � ) subspace. The dotted line shows the true

autocorrelation at lag 2.

V. DISCUSSION

The eigenvalue spread for both signals is reduced by all-
pole filtering. For the first signal, we note that the eigenvalues
become close to 1, which means that our residual consists
primarily of white noise (as far as we can determine using
second-order methods). This is not true to the same degree
for the second signal. Further, we see by projecting the IEAC
onto the first principal component (which is in the direction
of : ; � 0 � ) that the signal changes mean at half its length. This
should not be surprising, since that is exactly what the data
itself does. This suggests that if we are frame blocking the
signal, we should make our frame boundary in the middle of

the signal, which would significantly reduce the variation in
the eigenvalues.

By plotting the IEAC on its principal axis subspace, we
have seen that we may observe the variation of the signal’s
autocorrelation coefficients. For the contrived signal presented
here, we see a simple level change, which occurs in the
direction of only one of the autocorrelation lags (i.e. lag0 ). In general, however, we may have a change which is
more complicated than a level change (e.g. one which is best
described by a polynomial). The change might also take place
across several lags, instead of just one.

VI. CONCLUSION

If we assume that the signal does not come from a process
which is WSS, then the IEAC signal does not have a stationary
mean. Hence, we must find a way to characterize the behavior
of IEAC signals which have time-varying properties (i.e. we
should not use only the mean).

We suggest three ways in which a non-stationary signal may
be represented in terms of changing filter parameters. The first
method is to assume that the model is stationary over a small
interval. This assumption amounts to describing the the IEAC
signal as piecewise constant. The problem associated with
this method is then to find appropriate interval boundaries.
Another method is to assume that the model is not stationary,
but that its second-order moment follows a linear path though
a high-dimensional space. This approach means that the IEAC
signal changes linearly with time; this type of model would
have a projection onto its first principal component which was
linear. Finally, we may assume that the time trajectory of the
filter coefficients is non-linear; this approach would subsume
ways of parameterizing (and thus smoothing) the IEAC signal
such as using splines to fit the evolution of the autocorrelation
parameters.

Ultimately, how to parameterize the IEAC signal must
be left to domain-specific knowledge. Whether even linear
interpolation between two sets of filter coefficients warrants
the added complexity of having a filter (predictor) whose
coefficients change as a function of time remains to be seen.
Linear model parameterization of the IEAC, and its use in
developing an associated predictor, will be taken up in a
companion paper [2].
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